Part i

Meditating On

The Hardware

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

s |

= - —

w elcome to Part lll of Programming The Nintendo Game Boy Advance: The

Unofficial Guide. Part Ill includes four chapters that are focused on low-level
hardware programming, including interfacing with the Game Boy's buttons, using timers
and synchronizing objects on the screen, programming the sound system, and
interfacing with assembly language.A whole chapter is dedicated to ARM7 assembler,
which is the lowest level possible, right down to the bare metal of the Game Boy
Advance.

Chapter 8 — Using Interrupts And Timers
Chapter 9 — The Sound System

Chapter 10 — Interfacing With The Buttons
Chapter 11 — ARM7 Assembly Language Primer

Epilogue

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Chapter 8

Using Interrupts
And Timers

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

p to this point you have learned most of the concepts, theory, and code needed to

write entire games for the GBA. Although each chapter in this book largely stands
independently of the others, it would have been helpful to read them in order. The flip side
to delving into the GBA's graphics system—without argument, the largest and most
important aspect of GBA programming—so quickly is that you miss out on a lot of vital
subjects such as interrupts, timers, and button input. These subjects are so vital that it is
difficult to fully demonstrate the graphics system without them, and yet that would add a
huge amount of complexity to the graphics code. Despite the discrepancy and apparent
switch, these really are advanced subjects that would have been too difficult to explain in
the first half of the book—so here we are!

This chapter will explain interrupts and how they work, how you can use them, and even
how you can write them yourself. Then | talk about the all-important subject of timers,
how to slow down your program to a consistent frame rate. This has been something of a
problem in prior chapters (aside from using the vblank), but now you will have the means to
correct it.

Have you have ever wondered how professional GBA programmers seem to have such fine
control over the hardware? How their games just seem to run perfectly, smoothly, with
accurate timing, consistent frame rates? | sure have! It has everything to do with this
chapter, because these professional games are using interrupts and timers to keep the
"machine” running smoothly. This subject will really help you to refine your GBA coding
skills and make your code run smoothly and reliably.

Here are the subjects you'll learn about in this chapter:

° Using interrupts
o Using timers

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Using Interrupts

Do you ever feel as if you are interrupted far too often when trying to get work done? | am
constantly interrupted while writing code, writing the text of this chapter, and so on. There
is a parallel in computerdom, and it takes the shape of either a hardware interrupt or a
software interrupt. A hardware interrupt is a physical event that pauses the CPU while
some other process (such as a memory copy) is occurring. For instance, a DMA memory copy
causes a brief interrupt to occur, halting the CPU until it is finished. On the other hand,
there are software interrupts, which are virtual interruptions of the program, all occurring
within the CPU, rather than outside of it. A software interrupt is common in a multitasking
operating system like Windows 2000 or XP. Since the GBA is a console video game machine,
as you might have expected, all interrupts occur in the hardware side. The good news is
that you can trigger one of these interrupts using a CPU or BIOS instruction.

An interrupt basically works like this. First, disable all interrupts, because if an interrupt
occurs while you are screwing with the interrupt registers, your GBA could melt. Okay, not
really, but it would probably look like your GBA is possessed because weird things could
happen. In the Windows world, we call that a GPF, a general protection fault, meaning that
the core has been corrupted. | have always thought of an operating system's core as the
central armory in a medieval castle—the building inside the castle walls, surrounded by a
courtyard, where merchants and farmers sell their goods.

Where was 1?7 Oh yes, interrupts. After you have disabled interrupts, then you configure the
interrupt registers before enabling the interrupts again. Think of it as telling the
cannoneers atop your castle walls, "Don’t you dare fire it while I'm reloading!”

The chief interrupt officer of the GBA is REG_IME, which has an unofficial title of "interrupt
master enable register.” When you want to disable interrupts, you set REG_IME = 0x0.
Likewise, to enable interrupts, you set REG_IME = Ox1. If you simply set this register,
nothing will happen, because you haven't specified which interrupts should occur—the who,
what, when, where, and how, so to speak. To enable specific interrupts, you set specific
bits in the interrupt enable register, REG_IE. This subordinate "enable interrupts” register
works on each type of interrupt individually. There are interrupts available for DMA,
vertical blank, horizontal blank, vertical count, timers, serial communications, and
buttons, and each type of interrupt has a special bit value and a specific register. For
instance, the interrupt register for DMA2 is REG_DMA2CNT, and the interrupt register for
the display status is REG_DISPSTAT. Let's take a look at that one right now (see Table 8.1).

As | mentioned, REG_DISPSTAT is just the interrupt register for the display status, which is
the most oft-used interrupt. Now, in order to actually turn on an interrupt, you need to
know what REG_IE bits represent. Table 8.2 lists the bits for that register.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Bit Description

0 VB - vertical blank is occurring

1 HB - horizontal blank is occurring

o U AN W N

VC - vertical count reached
VBE - enables vblank interrupt
HBE - enables hblank interrupt
VCE - enables vcount interrupt
-15 VCOUNT - vertical count value (0-159)

Bit Description

0 VB - vertical blank interrupt

1 HB - horizontal blank interrupt

2 VC - vertical scanline count interrupt
3 TO - timer O interrupt

4 T1 - timer 1 interrupt

5 T2 - timer 2 interrupt

6 T3 - timer 3 interrupt

7 COM - serial communication interrupt
8 DMAO - DMAO finished interrupt

9 DMA1 - DMAT1 finished interrupt

10 DMA2 - DMA2 finished interrupt

11 DMA3 - DMA3 finished interrupt

12 BUTTON - button interrupt

13 CART - game cartridge interrupt
14-15 unknown/unused

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The REG_IE bits are used quite often and are needed in order to create any interrupt, so it
is helpful to create some definitions of these bit values, as follows. The hexadecimal values
in this list of definitions allow you to perform a bitwise AND with the REG_IE register in
order to set the specific bit, without interfering with any of the other bits.

#define INT_VBLANK 0x0001
#define INT_HBLANK 0x0002
#define INT_VCOUNT 0x0004
#define INT_TIMERO 0x0008
#define INT_TIMER1 0x0010
#define INT_TIMER2 0x0020
#define INT_TIMER3 0x0040
#define INT_COM 0x0080
#define INT_DMAO 0x0100
#define INT_DMA1l 0x0200
#define INT_DMAZ2 0x0400
#define INT_DMA3 0x0800
#define INT_BUTTON 0x1000

#define INT_CART 0x2000

It is pretty interesting how an interrupt actually occurs. What happens is that when an
interrupt is triggered, the CPU saves the state of all the registers and then passes control to
the interrupt service routine (which you must specify). After the ISR is finished, the CPU
restores the registers and continues from the point where it was interrupted.

As for the ISR, that is something you must write yourself! Thankfully, it can be a C function,
rather than assembler. The key to writing an ISR is understanding one simple fact: Every
interrupt, regardless of type, is set to branch out to memory address 0x3007FFC. What you
must do is intercept that memory address and have it point to your own ISR (a simple C
function that I'll show you how to write). What | mean by "every interrupt” is exactly that,
taken literally. All interrupts are passed to that memory address, so when an interrupt
comes in, you must check to see which interrupt was triggered. The nice thing about this is
that you need only write a single ISR for all the interrupts you are using in your GBA
program.

There is another helper register called REG_IF that is a duplicate of REG_IE and is used to
determine which interrupt was triggered (refer to Table 8.2 for the bit layout of REG_IF).
However, don't be confused by this fact. One and only one interrupt will occur at a time! So
the REG_IF register will have only one bit set, not several. You don't process all the
interrupts that are occurring—that was a funny mistake | made when first learning about

298

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

- - | L

interrupts. It makes perfect sense if you think about it. Since the CPU is saving everything
and sending control off to 0x3007FFC, why would there be more than one interrupt
happening?

The good news about that is that you can simply compare REG_IF with the various interrupt
definitions to see which one is occurring. More than likely, you will be using just one or two
interrupts in your own programs, so a comprehensive check for all the interrupts is not
necessary. Just look for the interrupt you have turned on, and that is all. For example:

if ((REG_IF & INT_TIMERO) == INT_TIMERO)
{

//your timer code goes here

}

At the end of your ISR, be sure to turn off the bit for that particular interrupt request:

REG_IF |= INT_TIMERO

Let's take this pseudocode a step further and make it a little more complete before actually
writing a complete program. First, let's define a register to the memory address for
interrupts:

#define REG_INTERRUPT * (unsigned int*)0x3007FFC

So now, all you have to do is pass the name of your ISR function to this register, and the
compiler will copy the address of that function into the interrupt link. Here's a short
snippet that includes all the steps:

//first, turn off interrupts

REG_IME = 0x00;

//make ISR point to my own function

REG_INTERRUPT = (unsigned int)MyHandler;

//turn on vblank interrupt

REG_IE |= INT_VBLANK;

//tell dispstat about vblank interrupt

REG_DISPSTAT |= 0x08;

//lastly, turn interrupts back on

REG_IME = BITO0O;

Now all that is needed is your own function for dealing with interrupts. Since | called it
MyHandler in the preceding code, that's what I'll call it here. | have not commented this
function, so as to keep it short. The full-blown handler in the InterruptTest program (a little
further on) fully explains each line.

299

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

void MyHandler (void)

{
REG_IME = 0x00;
Int_Flag = REG_TIF;

if ((REG_IF & INT_HBLANK) =

INT_HBLANK)

{

//horizontal refresh--do something quick!

}
REG_IF = Int_Flag;

REG_IME = 0x01;

The InterruptTest Program

The InterruptTest program (shown in Figure 8.1) demonstrates how to create an interrupt
service routine in the form of a callback function. It is surprisingly easy to set up custom
interrupts on the GBA, so the program is fairly short. This program does something very
simple, because | want you to focus more on the interrupt code than any fancy display code
or demo. Therefore, this program simply draws a mode 3 pixel when an interrupt occurs. |
should point out that horizontal blank is a very short time interval that you shouldn't screw
around with, or the display could go fubar (for the scientist, that means the horizontal
blank has been distended, resulting in possible loss of image). Drawing a pixel is a one-liner,
but drawing a random pixel is a three-liner, so it provides just enough to prove the interrupt
is working.

Figure 8.1

The InterruptTest program
demonstrates how to create
a custom interrupt service
routine.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

a I-:.- «] i . s = ,

The benefit here also is that you gain some experience working with the hblank, which is
different from vblank, because there are 160 hblank interrupts for every one vblank, so
your hblank code must be fast! In this example, what is happening is that 160 pixels are
being sent to video memory every time the screen is refreshed. Some pixels are added
behind the scanline and don't appear until the next vblank, while some pixels are added
before the scanline and do appear right away. It's an interesting thing to play around with. |
would recommend against using hblank unless absolutely necessary because it affects the
performance of the video system.

The InterruptTest Header File
JITITIIII1I 1100700 100770010077077001707100170710071011777

// Programming The Game Boy Advance

// Chapter 8: Interrupts, Timers, and DMA
// InterruptTest Project

// main.h header file

L1177 7777777777777 77777777777 T

#ifndef _MAIN_H

#define _MAIN_H
#include <stdlib.h>

//define some data type shortcuts
typedef unsigned char u8;

typedef unsigned short ulé6;
typedef unsigned long u32;
typedef signed char s8;

typedef signed short sl6;

typedef signed long s32;

//packs three values into a 15-bit color

#define RGB(r,g,b) ((r)+(g<<5)+ (b<<10))

//define some display registers

#define REG_DISPCNT * (u32*)0x4000000

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define BG2_ENABLE 0x400

#define SetMode (mode) REG_DISPCNT = (mode)

//define some interrupt registers

#define REG_IME *(ul6*)0x4000208
#define REG_IE *(ule*)0x4000200
#define REG_IF *(ule*)0x4000202

#define REG_INTERRUPT * (u32*)0x3007FFC

#define REG_DISPSTAT *(ule*)0x4000004

//create prototype for custom interrupt handler

void MyHandler (void);

//define some interrupt constants
#define INT_VBLANK 0x0001
#define INT_HBLANK 0x0002
#define INT_VCOUNT 0x0004
#define INT_TIMERO 0x0008
#define INT_TIMER1 0x0010
#define INT_TIMER2 0x0020
#define INT_TIMER3 0x0040
#define INT_COM 0x0080
#define INT_DMAO 0x0100
#define INT_DMA1l 0x0200
#define INT_DMA2 0x0400
#define INT_DMA3 0x0800
#define INT_BUTTON 0x1000

#define INT_CART 0x2000

//create pointer to video memory

unsigned short* videoBuffer = (unsigned short*)0x6000000;

#endif

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The InterruptTest Source File

Now for the main source code file of the InterruptTest program. This is a short program
listing, thanks to the header file, allowing you to focus on exactly what is going on.

[I1177177 7077777777777 77777777777777777777777777777777777777
// Programming The Game Boy Advance

// Chapter 8: Interrupts, Timers, and DMA

// InterruptTest Project

// main.c source code file

[T 0070707777777 777777777777777777777777

#define MULTIBOOT int _ gba_multiboot;

MULTIBOOT

#include "main.h"

L1777 7777777777777 7777777777777 777777777777
// Function: main ()
// Entry point for the program
L1777 707777777 777777 77777777777 7777777777777777777777777777
int main (void)
{

//Set mode 3 and enable the bitmap background

SetMode (3 | BG2_ENABLE) ;

//disable interrupts

REG_IME = 0x00;

//point interrupt handler to custom function

REG_INTERRUPT = (u32)MyHandler;

//enable hblank interrupt (bit 4)

REG_IE |= INT_ HBLANK;

//enable hblank status (bit 4)

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

REG_DISPSTAT |= 0x10;

//enable interrupts

REG_IME = 0x01;

//endless loop
while (1) ;

return 0;

I111T77 777777777777 777777777777777777777777777777777777777
// Function: DrawPixel3

// Draws a pixel in mode 3
[11777
void DrawPixel3(int x, int y, unsigned short c)

{

videoBuffer[y * 240 + x] = c;

L1777 0777777700777 7777777777777
// Function: MyHandler
// Custom interrupt service callback function
I111T777 7777777777777 77777777 7777777777777777777777777777777
void MyHandler (void)
{

ulé Int_Flag;

ulé x, v;

ul6é color;

//disable interrupts

REG_IME = 0x00;

//backup the interrupt flags

Int_Flag = REG_IF;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//look for horizontal refresh
if ((REG_IF & INT_HBLANK) == INT_HBLANK)
{
//draw a random pixel
x = rand () % 240;
y = rand() % 160;
color = RGB(rand()%31l, rand()%31, rand()%31);

DrawPixel3 (x, y, color);

//restore the interrupt flags

REG_IF = Int_Flag;

//enable interrupts

REG_IME = 0x01;

Using Timers

The subject of timers is perhaps the most important subject you can learn about the GBA,
aside from graphics programming, because timers are critical to keeping the game running
at a stable frame rate, and they come in handy when you want to insert a delay into the
game (for instance, when scrolling text on the screen). The timing within the GBA is
precise. For example, the refresh rate (the time it takes to draw all 160 scanlines) takes
280,896 CPU cycles (also called ticks). The vertical blank period is not the same as vertical
refresh—the blank is the period of time during which the pixel "pointer” (for lack of a better
term) is moved from the bottom-right back up to the top-left to start refreshing the screen
again—using the video buffer. This vblank period is exactly 83,776 cycles. To be more
precise still, the horizontal blank (hblank) takes 228 cycles, while a horizontal draw
(hdraw) takes 1,004 cycles. These are incomprehensible time periods for the human mind
to grasp—billionths of a second, or nanoseconds.

There are four timers built into the GBA, and they are each capable of handling 16-bit
numbers, meaning the timers count from 0 to 65,535. The timers are based on the system

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

clock. There are four frequencies available that you can set for the timers, as listed in
Table 8.3.

Table 8.3 Timer Frequencies

Value
0

Frequency Duration

16.78 MHz clock Every 59.595 nanoseconds
64 cycles Every 7.6281 microseconds
256 cycles Every 15.256 microseconds
1,024 cycles Every 61.025 microseconds

This table can be converted to a set of definitions to be used when setting up a timer:

#define
#define
#define

#define

TIMER_FREQUENCY_SYSTEM 0x0

TIMER_FREQUENCY_64
TIMER_FREQUENCY_256

TIMER_FREQUENCY_1024

0x1
0x2

0x3

There are a few things | need to go over about timers before you can create a timer using
one of these four frequencies. I'm sure you're eager to get started, so I'll be brief with the
following descriptions. First, you will need to select one or more timers to program. The
four timers have the following definitions, which point to the time control memory
addresses:

#define
#define
#define

#define

REG_TMOCNT * (volatile
REG_TMICNT * (volatile
REG_TM2CNT * (volatile

REG_TM3CNT * (volatile

ul6*)0x4000102
ul6e*)0x4000106
ul6*)0x400010A

ul6e*)0x400010E

Now these are merely the addresses of where to change the status bits for the timer. To
actually read the values generated by the timers, you'll need to look at a different set of
memory addresses set aside for this purpose. These are called the REG_TMxD addresses and
are defined here:

#define
#define
#define

#define

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

REG_TMOD *(volatile ul6*)0x4000100
REG_TM1D *(volatile ul6*)0x4000104
REG_TM2D *(volatile ul6*)0x4000108
REG_TM3D *(volatile ul6e*)0x400010C

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

The structure of these 16-bit memory addresses are laid out a bit at a time in Table 8.4.

Table 8.4 REG_TMXxCNT Bits

Bit Description

0-1 Frequency

2 Overflow from previous timer
3-5 Not used

6 Overflow generates interrupt
7 Timer enable

8-15 Not used

The first two bits are set to one of the TIMER_FREQUENCY_x defines above, while the other
three options are set with the following defines:

#define TIMER_OVERFLOW 0x4
#define TIMER_IRQ_ENABLE 0x40
#define TIMER_ENABLE 0x80

Timers are quite a bit easier to use than interrupts because there is no callback function to
worry about (although | would point out that it is entirely possible to create an interrupt of
a timer). The TimerTest program is a very good demonstration of using timers, including the
use of the overflow (which means that when one timer reaches the 65,536 limit, it resets to
0 and increments the next timer, if so configured). Overflow is a very nice feature in the
GBA, providing for some convenient timing mechanisms, although you may use variables
just as well to keep track of this sort of thing, perhaps by performing a test such as this:

timer = REG_TMOD;
if (timer % 65536)

{

//overflow——-time to deal with it

The TimerTest Program

And now to present the TimerTest program. Enjoy it while it lasts! Okay, the TimerTest
program uses the font developed back in Chapter 5, "Bitmap-Based Video Modes," so you'll
need the font.h file, which may be copied from the DrawText project folder from Chapter

o ' | e
5, or you may simply open the TimerTest project from \Sources\ChapterO8\TimerTest. This
program features both a header and source file, with the bulk of the GBA-specific hardware
code hidden away in the header. Technically, this is a bad coding practice, but these
programs are all so short, it would be silly to put just definitions, constants, and prototypes
in a .h file, while moving all source listings into proper .c files. Therefore, the most
commonly used functions are also included in the header.

That is the proper way to do it, after all, but it compiles all the same this way, so | prefer
to keep things simple. Now, if you were to write you own GBA game, it would most likely be
quite lengthy, so | would recommend using multiple source files for larger projects. You may
even move graphics code into graphics.h and graphics.c, for instance, and then move the
button code into button.h and button.c. It's entirely up to you—I present simple code
listings, with each chapter and each project standing on its own so the reader may jump
around at will, and leave organization up to you.

Now, about that TimerTest program. A screen shot is shown in Figure 8.2. Watch and learn.

—— w
| e rians- L beta nnern- [T i =
L] i 35

- g]
LT
28 Wi P

e -

TIHEREB: CRE

Figure 8.2

The TimerTest program
displays four timers on
the screen, two of which
are overflows.

This project is like any other, with a main.c and main.h file. If you need a refresher on using
Visual HAM, refer back to Chapter 3, "Game Boy Development Tools," for screen shots and a
walk-through of creating projects and adding source files. The TimerTest header is listed
first. Naturally, if you want to save some time, feel free to copy code from earlier projects
and paste into each new project. | do reuse quite a bit of code from one project to the
next.

The TimerTest Header

Here is the header for the TimerTest program, which should be saved in a file called
main.h.

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

[I77

// Programming The Game Boy Advance

// Chapter 8: Using Interrupts and Timers
// TimerTest Project

// main.h header file

LI TTTTT TP 7777777777 7777777777777777

#ifndef _MAIN_H

#define _MAIN_H

#include <stdio.h>
#include <string.h>

#include "font.h"

//define some data type shortcuts
typedef unsigned char u8;

typedef unsigned short ulo6;
typedef unsigned long u32;
typedef signed char s8;

typedef signed short sl6;

typedef signed long s32;

//declare some function prototypes

void DrawPixel3 (int, int, unsigned short);

void DrawBox3 (int, int, int, int, unsigned short)
void DrawChar (int, int, char, unsigned short);

void Print (int, int, char *, unsigned short);

//define the timer constants
#define TIMER_FREQUENCY_SYSTEM 0xO0
#define TIMER_FREQUENCY_64 0Ox1
#define TIMER_FREQUENCY_256 0x2
#define TIMER_FREQUENCY_1024 0x3

#define TIMER_OVERFLOW 0x4

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define TIMER_ENABLE 0x80

#define TIMER_IRQ_ENABLE 0x40

//define the timer status addresses

#define REG_TMOCNT
#define REG_TMICNT
#define REG_TM2CNT

#define REG_TM3CNT

//define the timer
#define REG_TMOD
#define REG_TMI1D
#define REG_TM2D

#define REG_TM3D

*(volatile
*(volatile
*(volatile

*(volatile

data addresses
*(volatile
*(volatile
*(volatile

*(volatile

//define some video mode values

ul6*)0x4000102
ul6e*)0x4000106
ule*)0x400010A

ul6*)0x400010E

ul6e*)0x4000100
ul6*)0x4000104
ul6e*)0x4000108

ul6*)0x400010C

#define REG_DISPCNT * (unsigned long*)0x4000000

#define MODE_3 0x3

#define BG2_ENABLE

0x400

//declare scanline counter for vertical blank

volatile unsigned short* ScanlineCounter =

(volatile unsigned short*)0x4000006;

//create a pointer to the video buffer

unsigned short* videoBuffer =

[I77

// Function: Print

(unsigned short*)0x6000000;

// Prints a string using the hard-coded font

LI TTTT TP r 777777 77777777777777777777

void Print (int left,

{

int pos = 0;

int top,

char *str,

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

unsigned short color)

while (*str)

{

DrawChar (left + pos, top, *str++, color);

pos += 8;

[11777
// Function: DrawChar

// Draws a character one pixel at a time

I117T7777 777777777777 77777777777777777777777777777

void DrawChar (int left, int top, char letter, unsigned short color)

{
int x, y;

int draw;

for(y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
{
// grab a pixel from the font char
draw = font[(letter-32) * 64 + y * 8 + x];
// 1f pixel = 1, then draw it
if (draw)

DrawPixel3 (left + x, top + y, color);

L1107 7 7777777777777 77777777777 77777777777
// Function: DrawPixel3

// Draws a pixel in mode 3

II11T7777 7777777777777 7777777777777 777777777777777
void DrawPixel3 (int x, int y, unsigned short color)

{

videoBuffer[y * 240 + x] = color;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

LI

// Function: DrawBox3

// Draws a filled box

J11TT77 7777777077777 77777777 7777777777777777777777777777777
void DrawBox3 (int left, int top, int right, int bottom,

unsigned short color)

int x, y;

for(y = top; y < bottom; y++)
for(x = left; x < right; x++)

DrawPixel3(x, y, color);

L7777 777
// Function: WaitVBlank
// Checks the scanline counter for the vertical blank period

N,

void WaitVBlank (void)

{
while (! (*ScanlineCounter));

while ((*ScanlineCounter));

#endif

The TimerTest Source Code

The main.c source code file for the TimerTest program is next. This code should be
straightforward enough to follow, since the bulk of the program is stored away in the
header file.

[I77

// Programming The Game Boy Advance

// Chapter 8: Using Interrupts and Timers
// TimerTest Project

// main.c source code file

LTI TTT TP P77 7777777 77777777777777777

#define MULTIBOOT int __gba_multiboot;

MULTIBOOT

#include "main.h"

I111T777 7777777777777 7777777 7777777777777777777777
// Function: main ()
// Entry point for the program
L1770 7007777777077 7777777777777 777777777777 77
int main ()
{

char str[20];

int timers;

//switch to video mode 3

REG_DISPCNT = (3 | BG2_ENABLE);

//turn on timer0, set to 256 clocks

REG_TMOCNT = TIMER_FREQUENCY_256 | TIMER_ENABLE;

//turn on timerl, grab overflow from timer0

REG_TMICNT = TIMER_OVERFLOW | TIMER_ENABLE;

//turn on timer2, set to system clock

REG_TM2CNT = TIMER_FREQUENCY_SYSTEM | TIMER_ENABLE;

//turn on timer3, grab overflow from timer?2

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

REG_TM3CNT = TIMER_OVERFLOW | TIMER_ENABLE;

//print out labels

Print (70, 30, "TIMERO:", OxOFFO);
Print (70, 40, "TIMER1l:", OxFEOQO);
Print (70, 60, "TIMER2:", O0xO0OQOFA);

Print (70, 70, "TIMER3:", 0x09BO);

//endless loop
while (1)
{

WaitVBlank () ;

//erase the old timer values

DrawBox3 (140, 30, 180, 80, 0x0000);

//read the timer data

timers[0] = REG_TMOD / (65536 / 1000);
timers = REG_TMI1D;

timers = REG_TM2D / (65536 / 1000);

timers = REG_TM3D;

//print out timerO
sprintf (str, "%i", timers[0]);

Print (140, 30, str, OxOFFO);

//print out timerl
sprintf (str, "%i", timers);

Print (140, 40, str, OxFEQ0O);

//print out timer2
sprintf (str, "%i", timers);

Print (140, 60, str, O0xOO0OFA);

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//print out timer3

wmo s n

sprintf (str, %$i", timers);

Print (140, 70, str, 0x09BO);

WaitVBlank () ;

return 0;

The Framerate Program

The Framerate program was a long time waiting. | have wanted to delve into timers since
the fourth chapter in order to display what the GBA is capable of doing in the graphics
department. | think this program demonstrates that the VisualBoyAdvance emulator is
working perfectly, for one thing, because a consistent frame rate of 60 FPS comes through
when vblank is used. On the flip side, the frame rate skyrockets out of control with vblank
turned off! This means one thing—you definitely want to try your code once in a while
without vblank to see how it's doing without any chains attached!

Figure 8.3 shows the Framerate program running with vblank turned off. This is basically
the AnimSprite program from the previous chapter, which was the perfect example of a
situation where knowing the frame rate would be extremely useful, as this was the most
graphically intense program of the book so far. Look at that frame rate!

Figure 8.3

The Framerate program
running with vblank turned
off results in very high frame
rates in both the emulator
and an actual GBA. Note the
image tearing, though!

EEHGESEERCELSwn an -

EXXESHENENIXORD

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

- - | L

Turning vblank back on (by uncommenting the WaitVBlank() line) results in a consistent 60
FPS (as shown in Figure 8.4), which is what you might expect under a video system that has
a vertical refresh of 60 Hz. Now there are some weird things you can do to get around the
60 FPS limit without experiencing image tearing (as evidenced in Figure 8.3).

[mecdreem d sk e [e v L e A S i =
[] s it)

EEERESEE

Figure 8.4

With vblank in use, the
Framerate program reports
ST a nice consistent 60 FPS,

as expected, with nicely-
drawn sprites.

EEEEEIRESESFEEENEIGEEEE

i [Pl s | e §

This program is familiar if you have already worked through Chapter 7, "Rounding Up
Sprites.” If you are jumping around from chapter to chapter out of order, you'll have no
problem running the program in this incarnation, because it is listed in its entirety. It might
have been possible to just point out the differences between this Framerate program and
the AnimSprite program from the last chapter, but there were significant changes to both
the header and source code file, so | decided to just list both here in their entirety.

If you wish, you may load this project directly off the CD-ROM, which may be a good idea if
you already worked through the AnimSprite project. It is located in
\Sources\ChapterO8\Framerate.

The Framerate Header

Now here is the header file, main.h, which is included by the main.c file. This file basically
hides away all the messy details of a GBA program, allowing the main source code file,
main.c, to stick to the goal and is also less distracting.

L7770 07 7777777777777 777777777777 77777777777777777777777777

// Programming The Game Boy Advance

// Chapter 8: Using Interrupts and Timers

// Framerate Project

// main.h header file

L1177

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#ifndef _MAIN_H

#define _MAIN_H

//define some data type shortcuts
typedef unsigned char u8;

typedef unsigned short ulo6;
typedef unsigned long u32;
typedef signed char s8;

typedef signed short sl6;

typedef signed long s32;

#include <stdlib.h>
#include <stdio.h>
#include "bg.raw.c"
#include "ball.h"

#include "font.h"

//declare some function prototypes

void DrawPixel3 (int, int, unsigned short);
void DrawChar (int, int, char, unsigned short);
void Print (int, int, char *, unsigned short);

void WaitVBlank (void) ;

//define the timer constants
#define TIMER_FREQUENCY_SYSTEM 0x0
#define TIMER_FREQUENCY_64 0Ox1
#define TIMER_FREQUENCY_256 0x2
#define TIMER_FREQUENCY_1024 0x3
#define TIMER_OVERFLOW 0Ox4

#define TIMER_ENABLE 0x80

#define TIMER_IRQ_ENABLE 0x40

//define the timer status addresses

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#define

#define
#define

#define

REG_TMOCNT
REG_TMICNT
REG_TM2CNT

REG_TM3CNT

*(volatile
*(volatile
*(volatile

*(volatile

//define the timer data addresses

#define
#define
#define

#define

//macro

#define

REG_TMOD
REG_TM1D
REG_TM2D

REG_TM3D

*(volatile
*(volatile
*(volatile

*(volatile

to change the video mode

SetMode (mode) REG_DISPCNT

ul6*)0x4000102
ul6e*)0x4000106
ul6*)0x400010A

ul6e*)0x400010E

ul6e*)0x4000100
ul6*)0x4000104
ul6e*)0x4000108

ul6*)0x400010C

= (mode)

//create a pointer to the video buffer

unsigned short* videoBuffer = (unsigned short*)0x6000000;

//define some video addresses

#define REG_DISPCNT * (volatile unsigned short*)0x4000000

#define BGPaletteMem ((unsigned short*)0x5000000)

//declare scanline counter for vertical blank

volatile ul6* ScanlineCounter = (volatile ul6*)0x4000006;

//define object attribute memory state address

#define SpriteMem ((unsigned short*)0x7000000)

//define object attribute memory image address

#define SpriteData ((unsigned short*)0x6010000)

//video modes 3-5,

OAMData starts at 0x6010000 + 8192

unsigned short* SpriteData3 = SpriteData + 8192;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

//define object attribute memory palette address

#define

SpritePal ((unsigned short*)0x5000200)

//misc sprite constants

#define

#define

#define OBJ_ENABLE 0x1000

#define

OBJ_MAP_2D 0x0

OBJ_MAP_1D 0x40

BG2_ENABLEOx400

//attribute0 stuff

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

ROTATION_FLAG
SIZE_DOUBLE
MODE__NORMAL
MODE_TRANSPARENT
MODE_WINDOWED
MOSAIC

COLOR_256

SQUARE

TALL

WIDE

//attributel stuff

#define
#define
#define

#define

//an entry for object attribute memory

typedef
{

SIZE_8
SIZE_16
SIZE_32

SIZE_64

struct tagSprite

0x100

0x200
0x0
0x400
0x800
0x1000
0x2000
0x0
0x4000

0x8000

0x0
0x4000
0x8000

0xC000

unsigned short attributeO;

unsigned short attributel;

unsigned short attribute2;

unsigned short attribute3;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

}Sprite, *pSprite;

//create an array of 128 sprites equal to OAM

Sprite sprites[128];

typedef struct tagSpriteHandler
{

int alive;

int x, y;

int dirx, diry;

int size;

}SpriteHandler;

SpriteHandler mysprites[128];

I111T777 7777777777777 77777777 777777777777777777777
// Function: Print
// Prints a string using the hard-coded font
L1107 0077777770777 7777777777777
void Print (int left, int top, char *str, unsigned short color)
{

int pos = 0;

while (*str)

{

DrawChar (left + pos, top, *str++, color);

pos += 8;

[7770777
// Function: DrawChar
// Draws a character one pixel at a time

LI TTT TP 7777777777777 7777777777777777

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

void DrawChar (int left, int top, char letter, unsigned short color)

{
int x, y;

int draw;

for(y = 0; y < 8; y++)
for (x = 0; x < 8; x++)
{
// grab a pixel from the font char
draw = font[(letter-32) * 64 + y * 8 + x];
// if pixel = 1, then draw it
if (draw)

DrawPixel3 (left + x, top + y, color);

I111T777 7777777777777 77777777 777777777777777777777
// Function: DrawPixel3

// Draws a pixel in mode 3
[11777
void DrawPixel3(int x, int y, unsigned short color)
{

videoBuffer[y * 240 + x] = color;

L1717 7777777777 7777777777777
// Function: WaitVBlank
// Checks the scanline counter for the vertical blank period
I111T77 7777777707777 7777777 777777777777777777777777777777777
void WaitVBlank (void)
{

while (! (*ScanlineCounter));

while ((*ScanlineCounter));

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

#endif

The Framerate Source

Now for the main source code file for the Framerate program. You will likely see a lot of
familiar code here, but there is also a lot of new code due to the use of timers to determine
the frame rate. Most of the important code is located at the end of the main game loop,
just after the WaitVBlank function call.

L1170 77 0777777777777 777777777777 77777777777777777777777777

// Programming The Game Boy Advance

// Chapter 8: Using Interrupts and Timers

// Framerate Project

// main.c source code file

L1177 7777777777777 7777777777777777777777777777777777

#define MULTIBOOT int __gba_multiboot;

MULTIBOOT

#include "main.h"

#define NUMBALLS 10

L1177 7007777777 77777 7777777777 77777777777777777777777777777
// Function: HideSprites
// Moves all sprites off the screen
L1170 0077777770077 7777777777777 777777777777 7777777777777
void HideSprites ()
{

int n;

for (n = 0; n < 128; n++)

{

sprites[n].attributel0 = 160;

sprites[n].attributel = 240;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

[0 777777777

// Function: MoveSprite

// Changes sprite attributes for x,y positions

N,

void MoveSprite (int num)

{

//clear the old x value

sprites[num] .attributel =

sprites[num].attributel =

//clear the old y value

sprites[num] .attributel =

sprites[num] .attributel =

sprites[num]

sprites[num]

sprites[num]

sprites[num]

.attributel

.attributel

.attributel

.attributel

0xFEQO;

mysprites[num].x;

0xFF00;

mysprites[num].y;

[0

// Function: UpdateSpriteMemory

// Copies the sprite array into OAM memory

LI 7077777777777 7777777777777777777777

void UpdateSpriteMemory (void)
{
int n;

unsigned short* temp;

temp = (unsigned short*)sprites;

for(n = 0; n < 128 * 4; n++)

SpriteMem[n] = temp[n];

LI 0 0PI 7777777777777 77777777777 7777777777777777777

// Function: InitSprite

// Initializes a sprite within the sprite handler array

LI 0 PP 777777777777777777777

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

void InitSprite(int num,

{

unsigned int sprite_size

mysprites[num].alive =
mysprites[num].size = s
mysprites[num] .x = X;
mysprites[num].y = y;
//in modes 3-5, tiles

sprites[num] .attribute2

//initialize

sprites|[num] .attributel

switch (size)

{

case 8: sprite_size
case 16: sprite_siz
case 32: sprite_siz
case 64: sprite_siz

sprites[num].attributel

L1717 0077777777777777777

// Function: UpdateBall

int x,

start at 512,

int y, int size, int color,

0;

1;

ize;

modes 0-2 start at O

= tilelndex;

= color | y;

= SIZE_8; break;

e = SIZE_16; break;
e = SIZE_32; Dbreak;
e = SIZE_64; break;

= sprite_size | x;

L1110 7077777777777777777777777777

// Copies current ball sprite frame into OAM

[I1777777777777777777777777

void UpdateBall (index)

{

ulé n;

[11777777777777777777777777777777

//copy sprite frame into OAM

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

int tileIndex)

for(n = 0; n < 512; n++)

SpriteData3[n] = ballDatal (512*index) +n];

L1177 77 0777777777777 777777777777 77777777777777777777777777
// Function: main ()

// Entry point for the program

L1177 77 0777777777777 777777777 777777777777777777777777777777
int main ()

{

char str[10];

int n;
int frames = 0;
int timer = 0;

//set the video mode--mode 3, bg 2, with sprite support

SetMode (3 | OBJ_ENABLE | OBJ _MAP_1D | BG2_ENABLE);

//draw the background
for(n=0; n < 38400; n++)

videoBuffer[n] = bg_Bitmap[n];

//set the sprite palette
for(n = 0; n < 256; n++)

SpritePal[n] = ballPalette[n];

//move all sprites off the screen

HideSprites();

//initialize the balls—--note all sprites use the same image
for (n = 0; n < NUMBALLS; n++)
{

InitSprite(n, rand() % 230, rand() % 150, ball_ WIDTH,

COLOR_256, 512);

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

(512)

while (mysprites[n].dirx == 0)

mysprites([n].dirx = rand() % 6 - 3;
while (mysprites[n].diry == 0)
mysprites([n].diry = rand() % 6 - 3;

int ball_index=0;

//start the timer

REG_TM3CNT = TIMER_FREQUENCY_256 | TIMER_ENABLE;

//main loop

while (1)

{
//increment the ball animation frame
if (++ball_index > 31)ball_index=0;

UpdateBall (ball_index);

for (n = 0; n < NUMBALLS; n++)
{
//update sprite x position
mysprites([n].x += mysprites[n].dirx;
if (mysprites[n].x > 239 - mysprites|[n]
{
mysprites[n].x = 239 - mysprites|[n]
mysprites([n].dirx *= -1;
}
if (mysprites([n].x < 1)
{
mysprites([n].x = 1;

mysprites[n].dirx *= -1;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

.size)

.size;

//update sprite y position

mysprites([n].y += mysprites[n].diry;
if (mysprites[n].y > 159 - mysprites[n].size)
{
mysprites[n].y = 159 - mysprites[n].size;
mysprites[n].diry *= -1;
}
if (mysprites[n].y < 1)
{
mysprites[n].y = 1;

mysprites([n].diry *= -1;

//update the sprite properties
MoveSprite (n);
}
//copy all sprites into object attribute memory
WaitVBlank () ;

UpdateSpriteMemory () ;

timer = REG_TM3D / (65536 / 1000);
frames++;
if (timer > 999)
{
//erase top of screen
for (n=0; n < 2400; n++)

videoBuffer[n] = bg_Bitmap[n];

//display frame rate
sprintf (str, "FPS %i", frames);
Print (1, 1, str, OXFFFF);

frames = 0;

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

It's nice to know how the program is performing by displaying the frame rate, so I'm sure
you'll find a use for this code in many a game. It could be optimized quite a bit, | won't deny
it—particularly the code that erases the top of the screen. However, that doesn't seem to
be affecting the frame rate at all. Really, from the screen shots, it is apparent that
WaitVBlank is a serious detriment to the actual capabilities of the GBA! The CPU is capable
of handling much more than these small example programs, which aren't even pushing the
hardware. As soon as you start to see the frame rate drop below 60 FPS, then it's time to
look into optimizations. But until then, don't waste time on it, and just keep working away
on whatever game you are creating! After all, remember that optimization comes last, and
only if it's needed. Worry more about writing good clean code first, and work on making an
enjoyable game, because in all likelihood you won't tap the power of the GBA.

Summary

This chapter provided the theory and practical sides of using interrupts and timers to
enhance your GBA programs. Using these two key hardware facilities, you will be able to
better control the granularity of your programs—that is, how fast or slow they run, how
smoothly the screen is refreshed, and how to process code based on certain interrupts. Not
only did you learn how to use interrupts and timers, you have learned the practical use for
them by writing an animated sprite program that displays the frame rate. As this is an
extremely useful new feature, I'm sure you'll find a need for it in all of your own GBA
projects.

Challenges

The following challenges will help to reinforce the material you have learned in this
chapter.

Challenge 1: The InterruptTest program draws a pixel every time during every hblank.
Modify the program so it instead draws a box during every vertical blank instead.

Challenge 2: The TimerTest program displays the values of each of the four timers, two of
which are set to specific frequencies, the other two set to overflow. Modify the program
using different sets of frequencies and note the change in the timers displayed on the
screen.

Challenge 3: The Framerate program displays a consistent 60 FPS. Bump up the number of
sprites displayed by modifying the NUMBALLS constant, adding 10 balls to the number each
time, and note the change in the frame rate as the ball count increases. Try to determine

the maximum number of balls that can be animated before the frame rate drops below 60
FPS.

Chapter Quiz

The following quiz will help to further reinforce the information covered in this chapter.
The quiz consists of 10 multiple-choice questions with up to four possible answers. The key
to the quiz may be found in the appendix.

1. What is the interrupt master enable register that turns interrupts on or off?
A. REG_IE
B. REG_IF
C. REG_IME
D. REG_DISPSTAT

2. How many interrupts are available on the GBA?
A. 14
B. 4
C.8
D. 12

3. What register is used to enable interrupt status for vblank, hblank, and vcount?
A. REG_IME
B. REG_DISPSTAT
C. REG_INTERRUPT
D. REG_CODE

4. To what memory address does the CPU shift control during an interrupt?
A. 0x6000000
B. 0x7001000
C. 0x4F00401
D. 0x3007FFC

5. What register is used in a custom interrupt callback function to determine which
interrupt has occurred?

A. REG_IF

B. REG_IE

C. REG_DISPCNT

D. REG_IME

6. Which interrupt, if enabled, is triggered 160 times for every screen refresh?
A. INT_DMA1
B. INT_HBLANK

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

Programming The Nintendo Game Boy Advance: The Unofficial Guide
Copyright (¢)2003 by Jonathan S. Harbour -- http://www.jharbour.com

C. INT_TIMER3
D. INT_VBLANK

7. True/False: Does the LCD screen on the GBA handle screen refresh itself?
A. True
B. False

8. How many CPU cycles are used up for every vertical refresh of the screen?
A. 280,896
B. 4,836,938,238
C. 160
D. 16,386

9. How many timers are available in the GBA?

10. What is the largest numeric value that a 16-bit timer can handle?
A. 4,096
B. 16,384
C. 65,536
D. 1,048,576

